Hướng dẫn giải Bài §7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo), chương I - Căn bậc hai. Căn bậc ba, sách giáo khoa toán 9 tập một. Nội dung bài giải bài 48 49 50 51 52 trang 29 30 sgk toán 9 tập 1 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần đại số có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 9.
Khi biến đổi biểu thức chứa căn bậc hai, người ta có thể sử dụng phép khử mẫu của biểu thức lấy căn.
Một cách tổng quát: Với các biểu thức A, B mà (A.Bgeq 0 và Bneq 0, ta có sqrt{frac{A}{B}}=frac{sqrt{AB}}{|B|})
Một cách tổng quát:
Với các biểu thức A, B mà (B>0), ta có: (frac{A}{sqrt{B}}=frac{Asqrt{B}}{B})
Với các biểu thức A, B, C mà (Ageq 0 và Aneq B^2), ta có (frac{C}{sqrt{A}pm B}=frac{C(sqrt{A}pm B)}{A-B^2})
Với các biểu thức A, B, C mà (Ageq 0, Bgeq 0 và Aneq B), ta có (frac{C}{sqrt{A}pm sqrt{B}}=frac{C(sqrt{A}pm sqrt{B})}{A-B})
Dưới đây là phần Hướng dẫn trả lời các câu hỏi có trong bài học cho các bạn tham khảo. Các bạn hãy đọc kỹ câu hỏi trước khi trả lời nhé!
Khử mẫu của biểu thức lấy căn
a) (displaystyle sqrt {{4 over 5}} )
b) (displaystyle sqrt {{3 over {125}}} )
c) (displaystyle sqrt {{3 over {2{a^3}}}} ) với a > 0
Trả lời:
Ta có:
a) (displaystyle sqrt {{4 over 5}} = sqrt {{{4.5} over {5.5}}} = {{sqrt {4.5} } over {sqrt {{5^2}} }} = {{2sqrt 5 } over 5})
b) (displaystyle sqrt {{3 over {125}}} = sqrt {{{3.125} over {125.125}}} = {{sqrt {3.125} } over {sqrt {{{125}^2}} }} = {{5sqrt {15} } over {125}} = {{sqrt {15} } over {25}})
c) (sqrt {dfrac{3}{{2{a^3}}}} = dfrac{{sqrt 3 }}{{sqrt {2{a^3}} }} = dfrac{{sqrt 3 }}{{sqrt {{a^2}.2a} }} = dfrac{{sqrt 3 }}{{left| a right|sqrt {2a} }} = dfrac{{sqrt 3 }}{{asqrt {2a} }}) ( = dfrac{{sqrt 3 .sqrt {2a} }}{{asqrt {2a} .sqrt {2a} }} = dfrac{{sqrt {6a} }}{{2{a^2}}})
Trục căn thức ở mẫu:
a) (displaystyle {5 over {3sqrt 8 }};,,{2 over {sqrt b }}) với b > 0
b) (displaystyle {5 over {5 - 2sqrt 3 }};,,,{{2a} over {1 - sqrt a }}) với (a ge 0) và (a ne 1)
c) (displaystyle {4 over {sqrt 7 + sqrt 5 }};,,,{{6a} over {2sqrt a - sqrt b }}) với a > b > 0
Trả lời:
Ta có:
a) +) (displaystyle {5 over {3sqrt 8 }} = {{5sqrt 8 } over {3sqrt 8 .sqrt 8 }} = {{5sqrt 8 } over {3.8}} = {5 over {24}}sqrt 8 )
+) (displaystyle {2 over {sqrt b }} = {{2sqrt b } over {sqrt b .sqrt b }} = {2 over b}sqrt b )
b) (displaystyle {5 over {5 - 2sqrt 3 }} = {{5left( {5 + 2sqrt 3 } right)} over {left( {5 - 2sqrt 3 } right)left( {5 + 2sqrt 3 } right)}} displaystyle = {{5left( {5 + 2sqrt 3 } right)} over {25 - 12}} = {{5left( {5 + 2sqrt 3 } right)} over {13}})
(displaystyle {{2a} over {1 - sqrt a }} = {{2aleft( {1 + sqrt a } right)} over {left( {1 - sqrt a } right)left( {1 + sqrt a } right)}} displaystyle = {{2aleft( {1 + sqrt a } right)} over {1 - a}})
c) (displaystyle {4 over {sqrt 7 + sqrt 5 }} = {{4left( {sqrt 7 - sqrt 5 } right)} over {left( {sqrt 7 + sqrt 5 } right)left( {sqrt 7 - sqrt 5 } right)}} displaystyle = {{4left( {sqrt 7 - sqrt 5 } right)} over {7 - 5}} = 2left( {sqrt 7 - sqrt 5 } right))
(displaystyle {{6a} over {2sqrt a - sqrt b }} = {{6aleft( {2sqrt a + sqrt b } right)} over {left( {2sqrt a - sqrt b } right)left( {2sqrt a + sqrt b } right)}} displaystyle = {{6aleft( {2sqrt a + sqrt b } right)} over {4a - b}})
Dưới đây là Hướng dẫn giải bài 48 49 50 51 52 trang 29 30 sgk toán 9 tập 1. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!
Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần đại số 9 kèm bài giải chi tiết bài 48 49 50 51 52 trang 29 30 sgk toán 9 tập 1 của bài §7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) trong chương I - Căn bậc hai. Căn bậc ba cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:
Khử mẫu của biểu thức lấy căn:
$sqrt{frac{1}{600}};sqrt{frac{11}{540}};sqrt{frac{3}{50}};$
$sqrt{frac{5}{98}}; sqrt{frac{(1-sqrt{3})^{2}}{27}}$.
Bài giải:
Ta có:
♦ (sqrt{dfrac{1}{600}}=dfrac{sqrt 1}{sqrt{600}})
(=dfrac{ 1}{sqrt{6.100}})(=dfrac{1}{sqrt{6.10^2}})
(=dfrac{ 1}{sqrt{6}.sqrt{10^2}})(=dfrac{ 1}{10sqrt{6}})
(=dfrac{ 1.sqrt 6}{10.6})(=dfrac{ sqrt 6}{60})
♦ $sqrt{dfrac{11}{540}}=dfrac{sqrt{11}}{sqrt{540}}$
$=dfrac{sqrt{11}}{sqrt{36.15}}=dfrac{sqrt{11}}{sqrt{36}.sqrt{15}}$
$=dfrac{sqrt{11}}{sqrt{6^2}.sqrt{15}}=dfrac{sqrt{11}}{6sqrt{15}}$
$=dfrac{sqrt{11}.sqrt{15}}{6.15}=dfrac{sqrt{11.15}}{90}=dfrac{sqrt{165}}{90}$.
♦ $sqrt{dfrac{3}{50}}=dfrac{sqrt 3}{sqrt{50}}$
$=dfrac{sqrt 3}{sqrt{25.2}}=dfrac{sqrt{3}}{sqrt{25}.sqrt{2}}$
$=dfrac{sqrt{3}}{sqrt{5^2}.sqrt{2}}=dfrac{sqrt{3}}{5sqrt{2}}$
$=dfrac{sqrt{3}.sqrt 2}{5.2}=dfrac{sqrt{3.2}}{10}=dfrac{sqrt{6}}{10}$
♦ $sqrt{dfrac{5}{98}}=dfrac{sqrt 5}{sqrt {98}}$
$=dfrac{sqrt 5}{sqrt{49.2}}=dfrac{sqrt 5}{sqrt{49}sqrt{2}}$
$=dfrac{sqrt 5}{sqrt{7^2}.sqrt 2}=dfrac{sqrt 5}{7sqrt 2}$
$=dfrac{sqrt 5 . sqrt 2}{7. 2}=dfrac{sqrt {5. 2}}{14}=dfrac{sqrt{10}}{14}$.
♦ $sqrt{dfrac{(1-sqrt{3})^{2}}{27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {27}}$
$=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {9.3}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {3^2.3}}$
$=dfrac{|1-sqrt{3}|}{3sqrt {3}}$
Vì (1< 3 Leftrightarrow sqrt 1 < sqrt 3 Leftrightarrow 1< sqrt 3) ( Leftrightarrow 1- sqrt 3 < 0)
(Leftrightarrow |1- sqrt 3|=-(1-sqrt 3)=-1 + sqrt 3 = sqrt 3 -1.)
Do đó:
$dfrac{|1-sqrt{3}|}{3sqrt {3}}=dfrac{sqrt{3}-1}{3sqrt {3}}$
$=dfrac{sqrt 3(sqrt{3}-1)}{9}=dfrac{3-sqrt 3}{9}.$
Khử mẫu của biểu thức lấy căn
$absqrt{frac{a}{b}}; frac{a}{b}sqrt{frac{b}{a}}; sqrt{frac{1}{b}+frac{1}{b^{2}}};$
$ sqrt{frac{9a^{3}}{36b}}; 3xysqrt{frac{2}{xy}}.$
(Giả thiết các biểu thức có nghĩa)
Bài giải:
Theo đề bài các biểu thức đều có nghĩa. Do đó ta có:
$absqrt{dfrac{a}{b}}=absqrt{dfrac{a.b}{b.b}}=absqrt{dfrac{ab}{b^2}}$
$=abdfrac{sqrt{ab}}{sqrt{b^2}}=abdfrac{sqrt{ab}}{left | b right |}.$
Nếu ( b ge 0) thì (|b|=b Rightarrow abdfrac{sqrt{ab}}{left | b right |}=abdfrac{sqrt{ab}}{b}=asqrt{ab}).
Nếu ( b < 0) thì (|b|=-b Rightarrow abdfrac{sqrt{ab}}{left | b right |}=-abdfrac{sqrt{ab}}{b}=-asqrt{ab}).
( dfrac{a}{b}sqrt{dfrac{b}{a}}=dfrac{a}{b}sqrt{dfrac{b.a}{a.a}}=dfrac{a}{b}sqrt{dfrac{ab}{a^2}})
(=dfrac{a}{b}.dfrac{sqrt{ab}}{sqrt{a^2}})(=dfrac{a}{b}.dfrac{sqrt{ab}}{|a|})(=dfrac{asqrt{ab}}{b|a|})
Nếu (ageq 0) thì ( |a|=a Rightarrow dfrac{asqrt{ab}}{b|a|}=dfrac{asqrt{ab}}{ab}=dfrac{sqrt{ab}}{b} .)
Nếu (a<0) thì (|a|=-a Rightarrow dfrac{asqrt{ab}}{b|a|}=-dfrac{asqrt{ab}}{ab}=-dfrac{sqrt{ab}}{b} .)
(sqrt{dfrac{1}{b}+dfrac{1}{b^2}}=sqrt{dfrac{b}{b^2}+dfrac{1}{b^2}}=sqrt{dfrac{b+1}{b^2}})
(=dfrac{sqrt{b+1}}{sqrt{b^2}}=dfrac{sqrt{b+1}}{|b|}).
Nếu (b ge 0) thì (|b|=b Rightarrow dfrac{sqrt{b+1}}{|b|}=dfrac{sqrt{b+1}}{b}).
Nếu (-1 le b < 0) thì (|b|=-b Rightarrow dfrac{sqrt{b+1}}{|b|}=-dfrac{sqrt{b+1}}{b}).
(sqrt{dfrac{9a^3}{36b}}=sqrt{dfrac{9}{36}}.sqrt{dfrac{a^3}{b}}=sqrt{dfrac{1}{4}}.sqrt{dfrac{a^3.b}{b.b}})
(=dfrac{1}{2}.sqrt{dfrac{a^2.ab}{b^2}})(=dfrac{1}{2}.dfrac{sqrt{a^2}.sqrt{ab}}{sqrt{b^2}})
(=dfrac{1}{2}.dfrac{|a|sqrt{ab}}{|b|}=dfrac{|a|sqrt{ab}}{2|b|}).
Nếu (a ge 0, b ge 0) thì (|a|=a, |b| =b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}).
Nếu (a < 0, b < 0) thì (|a|=-a, |b| =-b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}).
Theo đề bài (sqrt{dfrac{9a^3}{36b}}) có nghĩa nên (a, b) cùng dấu, do đó chỉ cần xét 2 trường hợp (a, b) cùng âm hoặc cùng dương.
(3xysqrt{dfrac{2}{xy}}=3xy.sqrt{dfrac{2.xy}{xy.xy}}=3xy.dfrac{sqrt{2xy}}{sqrt{(xy)^2}})
(=3xy.dfrac{sqrt{2xy}}{|xy|}) (=dfrac{3xy.sqrt{2xy}}{xy}=3sqrt{2xy}).
Vì theo đề bài (sqrt{dfrac{2}{xy}}) có nghĩa nên (dfrac{2}{xy} ge 0 Leftrightarrow xy ge 0 Rightarrow |xy|=xy).
Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:
$frac{5}{sqrt{10}}; frac{5}{2sqrt{5}}; frac{1}{3sqrt{20}}; $
$frac{2sqrt{2}+2}{5sqrt{2}}; frac{y+bsqrt{y}}{b.sqrt{y}}$
Bài giải:
+ Ta có:
$dfrac{5}{sqrt{10}}=dfrac{5.sqrt{10}}{sqrt{10}.sqrt{10}}$
$=dfrac{5sqrt{10}}{(sqrt{10})^2}=dfrac{5sqrt{10}}{10}$
$=dfrac{5.sqrt{10}}{5.2}=dfrac{sqrt{10}}{2}$.
+ Ta có:
$dfrac{5}{2sqrt{5}}=dfrac{5.sqrt 5}{2sqrt 5.sqrt 5}$
$=dfrac{5sqrt{5}}{2.(sqrt 5.sqrt 5)}=dfrac{5sqrt{5}}{2(sqrt 5)^2}$
(=dfrac{5sqrt 5}{2.5}=dfrac{sqrt 5}{2}).
+ Ta có:
$dfrac{1}{3sqrt{20}}=dfrac{1.sqrt{20}}{3sqrt{20}.sqrt{20}}$
$=dfrac{sqrt{20}}{3.(sqrt{20}.sqrt{20})}=dfrac{sqrt{20}}{3.(sqrt{20})^2}$
$=dfrac{sqrt{20}}{3.20}=dfrac{sqrt{2^2.5}}{60}$
$=dfrac{2sqrt 5}{60}=dfrac{2sqrt 5}{2.30}=dfrac{sqrt 5}{30}$.
+ Ta có:
$dfrac{(2sqrt{2}+2)}{5.sqrt 2}=dfrac{(2sqrt 2+2).sqrt 2}{5sqrt 2. sqrt 2}$
$=dfrac{2sqrt 2.sqrt 2+2.sqrt 2}{5.(sqrt 2)^2}=dfrac{2.2+2sqrt 2}{5.2}$
$=dfrac{2(2+sqrt 2)}{5.2}=dfrac{2+sqrt 2}{5}$.
+ Ta có:
$dfrac{y+bsqrt{y}}{bsqrt{y}}=dfrac{(y+bsqrt y).sqrt y}{bsqrt y .sqrt y}$
$=dfrac{ysqrt y+bsqrt y.sqrt y}{b.(sqrt y)^2}= dfrac{ysqrt y+b(sqrt y)^2}{by}$
$=dfrac{ysqrt y+by}{by}=dfrac{y(sqrt y+b)}{b.y}=dfrac{sqrt y+b}{b}$.
Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:
$frac{3}{sqrt{3}+1};frac{2}{sqrt{3}-1};frac{2+sqrt{3}}{2-sqrt{3}};$
$frac{b}{3+sqrt{b}};frac{p}{2sqrt{p}-1}$
Bài giải:
Ta có:
$frac{3}{sqrt{3}+1}=frac{3(sqrt{3}-1)}{(sqrt{3}-1)(sqrt{3}+1)}$
$=frac{3sqrt{3}-3}{2}$
$frac{2}{sqrt{3}-1}=frac{2(sqrt{3}+1)}{(sqrt{3}+1)(sqrt{3}-1)}$
$=frac{2(sqrt{3}+1)}{2}=sqrt{3}+1$
$frac{2+sqrt{3}}{2-sqrt{3}}=frac{(2+sqrt{3})^2}{(2+sqrt{3})(2-sqrt{3})}$
$=7+4sqrt{3}$
$frac{b}{3+sqrt{b}}=frac{b(3-sqrt{b})}{(3-sqrt{b})(3+sqrt{b})}$
$=frac{b(3-sqrt{b})}{9-b};(bneq 9)$
$frac{p}{2sqrt{p}-1}=frac{p(2sqrt{p}+1)}{(2sqrt{p}+1)(2sqrt{p}-1)}$
$=frac{p(2sqrt{p}+1)}{4p-1}$
Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:
(frac{2}{sqrt{6}-sqrt{5}};frac{3}{sqrt{10}+sqrt{7}};frac{1}{sqrt{x}-sqrt{y}};frac{2ab}{sqrt{a}-sqrt{b}})
Bài giải:
Ta có:
$frac{2}{sqrt{6}-sqrt{5}}=frac{2(sqrt{6}+sqrt{5})}{(sqrt{6}-sqrt{5})(sqrt{6}+sqrt{5})}$
$=2(sqrt{6}+sqrt{5})$
$frac{3}{sqrt{10}+sqrt{7}}=frac{3(sqrt{10}-sqrt{7})}{(sqrt{10}-sqrt{7})(sqrt{10}+sqrt{7})}$
$=sqrt{10}-sqrt{7}$
$frac{1}{sqrt{x}-sqrt{y}}=frac{(sqrt{x}+sqrt{y})}{(sqrt{x}+sqrt{y})(sqrt{x}-sqrt{y})}$
$=frac{sqrt{x}+sqrt{y}}{x-y}$
$frac{2ab}{sqrt{a}-sqrt{b}}=frac{2ab(sqrt{a}+sqrt{b})}{(sqrt{a}+sqrt{b})(sqrt{a}-sqrt{b})}$
$=frac{2ab(sqrt{a}+sqrt{b})}{a-b}$
Bài trước:
Bài tiếp theo:
Xem thêm:
Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 9 với giải bài 48 49 50 51 52 trang 29 30 sgk toán 9 tập 1!
“Bài tập nào khó đã có giaibaisgk.com“
Link nội dung: https://appstore.edu.vn/toan-9-tap-1-trang-29-a35148.html